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DETERMINATION OF THE SOURCE IN QUASILINEAR EQUATIONS
OF THE PARABOLIC TYPE

V. M. Volkov UDC 517.946

The uniqueness theorem is proven for the solution of the two-dimensional in-
verse prablem for an unknown source function dependent on the solution of the
direct problem and on the spatial coordinate.

We consider the heat equation in the region D(T, X,) = {x, < x < », 0 < t ¢ T}

U=t 4, D)+ fx, 0 (1)
subject to the boundary and initial conditions
Uty == 0, xo L x << o0, (2)
ou P
o |, T OSIST (3)

plus the following condition on the solption at the point x = X4
Uemr, = $ (1, %)), OSET. (4)

We assume that the parameter X, could range from zero to infinity. The problem is to
determine the function q(u, x) for a given function w(t, x,).

THEOREM. Let the functions f(x, t) and y(t, x,) satisfy the conditions f(x, t) € c[o,
=) x [0, T1), ¥(t, x,) € C1>°([0, T} x [0, »)) and y'(t, xo) 2 ¥ for t € [0, T}, where y is
a sufficiently large positive number. In addition, the consistency condition ¢(0, x,) = 0
is assumed to be satisfied.

Then the solution q(u, x)} of the inverse problem is unique in the class of functions
q(u, x) € C1s?! ((—, =) x [0, =)) satisfying the conditions
=90, <l DY %) — (9 ¢, xp), x), XE€lxp ), tE[N, T,

and for two arbitrary functions of this class q,(u, x) and qz(u, x) their difference q(u,
x) = q,(u, x) ~ q,(u, x) satisfies the inequality
o My, maxgo,eny <M M, (TR RaIX[0, =)

for a certain value of a € (0, 1).
Proof. The following maximum principle holds for the assumptions of the theorem.

Maximum Principle. If the conditions of the theorem are satisfied, then u(x, t) €
CZ:1((0, =) x (0, TI) n C({0, =) x {0, T]) 0 Lu((0, =) x (0, T]) and the solution of the
problem (1), (2), (4) satisfies the condition 0 5 u(x, t) g w(t, Xq), (x, t) € D(T, x,).

Furthermore suppose that there exist two solutions of the problem (1)-(4): {u,(x, t),
q1{u;, x)} and {u,(x, t), q2(uz, x)}. Then, putting x = x, in (1), we obtain the relation

Q(\P(t, xﬂ)v xo) = W; (tv xo)"’f(xo» t)‘“xx|x=x., (5)
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from which it follows that

(9 @)W (1, Xa), X0) = — (Upxy — Up)lemex, s (6)
We rewrite the problem (1)-(3) in terms of the new variable y = x — x,:
U =tty, -t qu, Y+ x0) +fy+ %0 ). (4, HED(T, 0), (7)
o =0, 0y < oo, (8)
LR 0L T, (9)
9y ly=o

The solution of the boundary-value problem (7)-(9) can be represented in the integral
form

= 1 (y—%)? [ (y+¢g?
, 1) == , XD §— = xp | — — &
u(y, 1) L\OQ SVl {ﬂp{ ryTR— }+e\l>l PyPR— H{q(u E-f xo) -+ [ (E 4 x,. ©)) dEdr.

Using this representation, (6) can be rewritten as

PR o, %0 | 1 g2
G —q) (F L. xg), %) = — 2 0\ 0\ a_l [%2 V*;(tTr) XeXP{— T—-T)}] {q1 (uy, E-F Xo) — s (s, £+ X)) dtdr,

or in terms of the new variable of integration § + x, = n:

2 ! [ (h—x? .
— " Xo) =—2 — . - [ _
(91— g2) (F(t, xo). o) \ i dt[ Vi xexpl — }J{qlwl,n) G2 (i1, M)} dnd-. (10)
We denote
! g . o2
Gy. &t 1) = _%[ex{ Ut I R VRt
Va t—1) P 4 —1) J e‘(pl 4—(1—1) }
Then
i\ Gy, & ¢, 1)dy = 0.
dy

Hence (10) can be rewritten in the form

(91— 0 (§ (. x0). %o) j \ —[*_l__cxp .I_M?;” X

ool V= [ 4¢—0 (11)
XUG — @) (e M) — (9 — @) (Y (T, x0), o)+ (0o (g, W) — Ga (s M)} dndr.
We obtain from (11)
(0 — ) (G (o), Xl ore.om < € § —— 1 exp T
— Go y Xo)v XoliL o . T 32! ;
! ? s (=07 L de—n (12)
X{|Q1_qzlwi'm(oum)([u‘_ ¥ (T Xl -F O — x0)?9) + 1gs | RIS I“l (M Y —uy(m, 1|} andr.
Introducing the norm
[feal| N =ess  sup  exp{— Bt} lu(x, 1)

< (D(1,0)) (a,2)e D1, 0y

and choosing the number 8 appropriately, it can be shown that lu, — uzly_(p(t,o)) has the
bound

fluy — tolle Lpirony <9y — Gaile (pis,0y)-
Representing llu; — u,ly % 2*(p(t,.)) in integral form, we obtain after some simple re-
. oo ’
ductions

—_ ¢ gy — gy .
lly — thally 1102 g, 35S ClM Galic, (b 00 (13)
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We proceed to bound the right-hand side of the inequality (12):

0

P ! (n—x)* | .
l@r‘%ﬂ¢0y%%XOhdmmn§J|§7Zij?£eW{—“jﬁzz%r}K
(14)
X {lgy — qzlwa.mw“_o)) (I, — ¥ (1, X% 4~ (N — x0)**) +

+ (=~ xo0) g — galle. ex.0n} dWi" .
We formulate the following lemma in order to further bound the right-hand side of the in-
equality (14):

LEMMA. Let

Ny, © = ——— (i, (1, ) — ¥ (5 ),
M — x,)?

then |Nu;(n, T)| s chf(x, t)hy_ 1,0(D(t,0)) The proof of this result is not complicated
and has been given by Lorentz.

Taking into account this lemma, (14) takes the form
2 (n—xo) }
— g5y (§ (¢, Xg), 2 ropy<<el ————1\exp{————-= X
(g, — 92) (b (£, xo) oML, (D.0y) << b( (t_T).s_,z ;\, P{ 1¢—1

XA — xo’*|q, — qzlw“’g“(o(pm) + (1 — %) 1191 — GallL,, (oex. 0y } dnidr.

To obtain the final bound, from which the uniqueness of the solution of the inverse problem
will follow, it remains to bound [q, — Qzlwm"-»m(D(t,o))' Assuming arbitrarily that 0 <
t; < t, < T, 0 < xy! < %42 < » and using (11), we obtain
g1 (% (8o, x?,), x2) — G5 (§ (Lo, X?,), X?,)—ql(\b (1 x), x(l)) +
+ g2 (W (¢, x(l))» x:,)lgc {[(xa—x:’)“‘"—% (ts —t1)*1 ”q1—qzlw“'2“(o(¢(1_x.),o)+ 9y —~ %l . onl}
We then obtain the ineguality '
gy — qg,“’i'?a(D(l.U)) <ol — qa!W?‘,‘m(D(\v(on).O)) + 191 — Gale, (Dt 0n)-
From the condition imposed on the function ${t, xg) in the statement of the theorem, namely
that y¢'(t, x,) 2 vy, we have

I Mg .
193 ‘/-1|“’.g.2am“‘o))>? 91 q‘llw/(:.?a(o(‘b(l'xn)'o)

Using this result, we obtain

_ {0 — g
g, q"’!\\‘/i'?a(D(wU,xo_).O))g\Y &) elgy — Gair (o, 0y)-

For sufficiently large y we have

91— Gl .20, =019 — Gl oy, 0y)-

(DOF(L . x0). 0)
Finally we obtain

t ] .
1§y — GalL,ptron < € ) ———— {41 — @i, (nr. 0y T
;7 (t—T)

This is inequality of Volterra type and it therefore follows that the solution of
the inverse problem is unique.

NOTATION

D(T, %), domain of the solution of the direct problem; C([0, =) x [0, T]), space of
the continuous functions; C®*sB({0, =) x {0, T]), space of the continuous functions with
derivative of order a with respect to the spatial variable and with derivative of order Bwith

b
respect to time; Y » definite integral; exp, exponential function; ess sup, essential su-
a
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premum; X, spatial variable; t, time; «, infinity; c, positive cénstant; m, number approxi-
mately equal to 3.14; 3/3t, 3/8x, partial derivatives with respect to time and space, re-
spectively. '

DETERMINATION OF THE CONTACT THERMAL RESISTANCE FROM THE SOLUTION
OF THE INVERSE PROBLEM OF THERMAL CONDUCTIVITY

L. V. Kim UDC 536.24

The contact resistance at the boundary between an orthropic reinforcing rod
and an isotropic matrix is determined from the solution of the inverse prob-
blem of thermal conductivity, using the gradient method. The suggested mod-
ification of the computational algorithm as the initial calculation of the
initial period of the thermal process is shown to enhance the resolving pow-
er of the method and the choice of zeroth approximations from below is shown
to ensure monotonic convergence of the solution.

One parameter which determines the heat exchange in reinforced materials or in elements
of complex structures is the contact thermal resistance (CTR) due to the nonideal mechanical
coupling of the contact surfaces. In theoretical studies on CTR the contribution of the
thermal resistance to the heat transfer across the contact interface of the media is de-
scribed by a condition in the form

o7, Y oT,
on

where R is the contact thermal resistance, X; and A, are the thermal conductivities of the
media in contact, and n is the normal to the contact surface. Thermal contact resistance
has been considered as a function of the determining parameters, e.g., temperature [1],
thermal stresses {2], and a complex of parameters in the form of the compression pressure,
the instantaneous tensile strength, and the height of the irregularities [3]. Nevertheless,
even though different determining parameters are chosen, the value of the thermal resis-
tance for each specific case is determined experimentally or is approximated [4].

A \
! on on

Artyukhin and Nenarokomov [5] advanced a fairly effective treatment for determining
CTR as a function. of the temperature on the basis of the solution of the inverse one-dimen-
sional problem. In view of this, it is of some interest to extrapolate this treatment to
the two-dimensional case and to study the possibilities of an algorithm for the sclution.

The CTR is reconstructed on the example of an orthotropic cylindrical region surrounded
by an isotropic medium. The mathematical simulation of the heat transfer in the media in
contact was presented in the form of a two-dimensional, nonstationary system of equations
involving the temperature dependence of the coefficient being sought:

aT, 0T, 1 4 oT, ))
ot al( 7 7 ( or
oT, 2T, 1 0 ( oT, )
— = Qg —— Qg —— — | r———1,
d %o TR o e
Tz r, O)y=Ty(2z, r, 0) =T, = const; (2)
oT, (0, r, 1) _ oT, (0, r, 1) 0
gz oz ’
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